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Abstract

A new class of spatial data structures called discrete global
grid systems (DGGS’s) is introduced and the general ap
cation classes for it are discussed. DGGS’s based on sub
sions of the platonic solids, called Geodesic DGGS’s, a
then introduced. A number of existing and proposed Geo
sic DGGS’s are examined by looking at four design choic
that must be made in constructing a Geodesic DGGS: 
base platonic solid, the orientation of that solid relative to t
earth’s surface, the method of subdivision defined on a fa
of that solid, and a method for relating that planar subdi
sion to the corresponding spherical surface. Finally, 
examination of these design choices leads us to the const
tion of the ISEA3H DGGS.

Key Words: discrete global grid systems, spatial data stru
tures.

Introduction

The use of spatial data structures based upon regular hie
chical partitions of subsets of the plane has become incre
ingly common. Such data structures exhibit a high degree
regularity that makes it possible to develop very efficie
algorithms for common spatial database and geometric op
ations (Nievergelt, 1989; Samet, 1990).

One of the more important spatial domains is the surface
the earth. This domain is of course topologically equivale
to the surface of a sphere and not to a subset of the carte
plane. However, traditionally the earth’s surface has be
transformed into a subset of the cartesian plane using m
ids.
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projections, and spatial data structures have been built re
enced to these planar spaces. This approach has proven 
factory for many applications, particularly those that de
with only a portion of the earth’s surface. But as truly glob
data sets of high resolution have become increasingly av
able, along with the computing power necessary to mani
late them on a global scale, there have been increas
efforts to develop data structures which more closely ret
the topology of the earth’s surface. In this paper we will d
cuss some of the more promising attempts to extend the c
cept of data structures based on regular hierarchi
partitions to global data sets. We will begin by defining th
class of spatial data structures under consideration, which
call discrete global grid systems (DGGS’s), and discussing
the major classes of applications for which they have be
proposed. We will then look at some of the design choic
which have been made in developing various existing a
proposed DGGS’s.

Discrete Global Grid Systems

Let a discrete grid be a set of areal cells that form a partitio
of the spatial domain of interest, with each cell having
point associated with it. Depending on the application, ve
tors of data values may be assigned to either the cells,
points, or to the point/cell combinations. Let a discrete grid
system be a (possibly infinite) series of discrete grids on t
same spatial domain. A discrete global grid system (DGGS)
is a discrete grid system in which the domain of interest
the earth’s surface, usually represented by some form
topologically equivalent approximation such as a sphere, 
spheroid, or a geoid.

Usually the series of discrete grids which constitute the d
crete grid system are a series of increasing resolution gr
If the resolution increases in a regular fashion we can def
the aperture of the system as the number of resolution k+
cells that correspond to a single resolution k cell, where 
resolution k+1 discrete grid is one resolution finer than t
resolution k grid. (This definition is a generalization of th
one given in Bell et al., 1983). Later we shall discuss som
DGGS’s which have more than one type of cell. In the
cases there is always one cell type which clearly predom
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nates, and the aperture of the system is defined using the
dominant cell type.

The types of data objects that are stored in spatial data struc-
tures are often considered as falling into two classes (e.g.,
Chrisman, 1997). These have been referred to — though
sometimes with subtle distinctions — under a variety of
terms in different contexts:

The first class of objects, as represented in the first column,
are those where vectors of data values are associated with 2-
dimensional areal cells. Often the data of interest is some
function defined over the spatial domain, and each cell rep-
resents a region over which the function takes on a uniform
or nearly uniform value, that value being the primary data
attribute of the cell. 

Representations in the second column are classified as
dimensionless point or location data and objects with distinct
boundaries, in particular ones that can be defined as a series
of 1-dimensional line segments referenced in terms of their
end-points. Under this representation vectors of data values
are associated with points, or with entities defined in terms
of points.

Resolution and Graticule

The familiar latitude/longitude graticule is the most common
basis for DGGS’s in use today. In the case of DGGS’s for
storing field data, lines spaced at regular latitude and longi-
tude increments form the boundaries of areal cells. Figure 1
shows such a grid with a 100 spacing between lines of lati-
tude and longitude.

Figure 1. Field discrete grid induced by latitude/longitude 
graticule with 100 resolution.

A DGGS may be formed by creating additional resolutio
discrete grids by grouping (or subdividing) squares to for
squares of coarser (or finer) resolution. A square can 
divided into n2 smaller squares by breaking each edge of t
original square into n pieces and connecting the break po
with lines parallel to the original edges. The most comm
such structure is the quadtree (where n = 2), which has s
use in a variety of computer science applications (as sum
rized in Samet, 1990). In a quadtree each square at a g
resolution is subdivided into four squares to form the ne
finer resolution grid. The quadtree is a specific instance of
rd-tree (Nievergelt, 1989) with dimension d = 2 and radix r
2. That is, it has a two-dimensional domain, and it is divid
by a factor of two in each dimension at each level in the tr
rd-trees have also been applied to grids based on the latit
longitude graticule. For example, we might define an rd-tree
with d = 2 and r = 10 to form successive grid resolutions c
responding to the digits of a decimal degree representat
Figure 2 shows a portion of the next resolution (10) of such a
structure formed on the grid depicted in Figure 1. Each of 
100 cells divides evenly into 100 10 cells (10 in each of the
two dimensions of latitude and longitude), and this subdi
sion can be continued to an arbitrarily fine resolution, cor
sponding to an arbitrary precision in decimal degrees. T
system has an aperture of 100.

Figure 2. Portion of two resolutions (100 and 10)
of a field rd-tree (d = 2, r = 10) defined by the

latitude/longitude graticule.

While not illustrated above, field grids usually associate w
each of the cells a point location that can be used to facilit
spatial access to, and spatial operations on, the areal c
For example, the distance between two cells might 
defined as the distance between their associated points. U
ally these points are placed consistently at the center or a
essentially arbitrary vertex of the cell.

entities/objects
vector

space bounding
points/locations

borders

fields
raster

space filler
regions
interiors



ll
ns
of

 an
 in
re

r-
 the
p-

,

Discrete grid systems based on rd-trees have a number of
useful properties. For example, one of the most fundamental
problems in spatial database theory is that the two-dimen-
sional spatial problem domain must be stored in a linear
address space in memory or on disk. This means that not all
of the spatial locality information in the actual domain can
survive the transformation to computer storage. Rd-trees
have proven convenient for developing linearizing space-
ordering methods that preserve a high degree of spatial local-
ity, such as Morton ordering (a discussion of a number of
these methods is given in Goodchild and Grandfield, 1983).
Also, rd-trees can be used to induce hierarchical 1-dimen-
sional addresses upon which can be defined tesseral arith-
metics. Tesseral arithmetics (see, for example, Diaz, 1984)
provide for extremely efficient computation of many geo-
metric operations directly on the addresses themselves.
Finally, homogeneous regions of the domain, where the data
value of concern remains uniform over a wide region, may
be represented by a coarser resolution grid than areas where
the value changes more abruptly. Thus the subdivision need
not be performed uniformly across the domain, saving on
overall storage requirements.

DGGS’s have also been used for storing locational data. As
pointed out by Dutton (1996), the traditional latitude/longi-
tude locational system can be thought of as a DGGS, with
each digit of precision constituting a discrete grid resolution,
and the resolution of a location being determined by the
number of significant digits (though he also notes that such a
device is rarely used in practice; usually only a single resolu-
tion cartesian locational grid is used in a given application).
In such systems point grids are formed by taking the inter-
sections of regularly spaced lines of latitude and longitude
(these lines formed the boundaries of the areal cells in the
field grid described above). Locations in the original spatial
domain are then mapped to the nearest point. The square
voronoi regions associated with each of the points form cells
that determine which locational regions are mapped to which
points. Such a grid is in effect a field grid where the data
value of concern is location; points of “nearly uniform” loca-
tion are mapped to the same cell in the grid. Figure 3 illus-
trates a portion of a 100 resolution location discrete grid
induced by the latitude/longitude graticule.

Changing resolution induces another discrete grid; Figure 4
shows a portion of the 10 resolution grid corresponding to the
100 resolution grid depicted in Figure 3. It should be noted
that this location grid is not the same as the field grid system
depicted earlier. The latitude/longitude lines play a 

Figure 3. Portion of 100 resolution location discrete
grid induced by the latitude/longitude graticule. Here
the actual location of Minneapolis, MN is assigned

a 100 resolution grid location as shown.

Figure 4. Portion of two resolutions (100 and 10)
of a location DGGS defined by the

latitude /longitude graticule.

different role in each (in the field grid they form the ce
boundaries, while in the locational grid their intersectio
form the point grid). Also, in the field grid the boundaries 
the 10 cells coincide with the boundaries of the 100 grid cells;
each of the coarser resolution cells can be thought of as
aggregate of 100 finer resolution cells. This is not the case
the locational grid; in this grid the coarse boundaries a
straddled by finer resolution cells.

We formalize this distinction as follows. Let G be an ape
ture n discrete grid system where each resolution k cell is
union of n resolution k+1 cells. We say that G has the pro
erty of being congruent. If G does not have this property
then we say that G is incongruent. Thus the graticule-based
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field grid is congruent, as are all rd-tree structures such as
quadtrees. The graticule-based location grid is incongruent.
Both data structures are, however, discrete global grid sys-
tems with an aperture of 100.

In addition to their use as static data structures for field and
location data, two specific applications have been proposed
for DGGS’s. These systems have been used to develop sta-
tistically sound survey sampling designs on the earth’s sur-
face. A discussion of this application is given in Olsen et al.
(1998) and will not be further discussed here. DGGS’s have
also been proposed as the basis for spatially discrete
dynamic simulations such as those used in global climate
modeling (Williamson, 1968; Sadournay et al., 1968; Heikes
and Randall, 1995a, 1995b; Thuburn, 1997).

DGGS’s based on the latitude/longitude graticule have
numerous practical advantages. They are based on a 2-
dimensional cartesian coordinate system; such systems have
long been a foundation of scientific inquiry on spatial
domains. Such square-based grids also map easily to com-
mon display devices. The latitude/longitude system itself has
been used extensively since well before the computer era and
is therefore the basis for a wide array of existing data sets,
processing algorithms, and software.

But such grids also have limitations. Square grids in general
do not exhibit uniform adjacency. Each square grid cell has
four neighbors with which it shares an edge, and whose cen-
ters are equidistant from it’s center. But each cell also has
four neighbors with which it shares only a vertex, and whose
centers are a different distance from its center than the dis-
tance to the centers of the edge neighbors. This is particu-
larly a problem when we attempt to use such grids for
discrete simulations.

DGGS’s based on the latitude/longitude graticule become
increasingly distorted in area and shape as one moves north
and south from the equator. The north and south poles, both
points on the surface of the globe, map to lines in the lati-
tude/longitude system; the top and bottom row of grid cells
in Figure 1 are in fact triangles, and not squares as they
appear on the plane. These polar singularities have forced
applications such as global climate modeling to make use of
special grids for the polar regions. Finally, DGGS’s induced
by the latitude/longitude graticule do not have equal area
cells, which is important for many applications.

Geodesic DGGS’s

The inadequacies of DGGS’s based on the latitude/longitude
graticule has led a number of researchers to explore alterna-

tive approaches. As has been widely observed (e.g., Whit et
al., 1992) the spherical versions of the five platonic soli
represent the only ways in which the sphere can be pa
tioned into cells each consisting of the same regular sph
cal polygon, with the same number of polygons meeting
each vertex. A number of researchers have used the plat
solids as a starting point for further recursive subdivisions
build finer resolution discrete grids, and in our opinion the
attempts have led to the most promising known options 
DGGS’s. A number of these researchers have been insp
directly or indirectly by R. Buckminster Fuller’s work in
descretizing the sphere that led to his development of 
geodesic dome, and for this reason we will refer to this cl
of DGGS’s as Geodesic DGGS’s.

It would be premature to conclude that any one proposed
Geodesic DGGS is the ideal DGGS. Indeed, it may well be
the case that no single DGGS will ever prove optimal for all
applications. Many of the proposed systems include design
innovations in particular areas, though their construction
may have involved other, less desirable design choices.
Therefore, rather than surveying individual Geodesic
DGGS’s as monolithic, closed systems, we will take t
approach here of viewing the construction of a Geode
DGGS as a series of design choices which are, for the m
part, independent.

The following design choices must be made to fully spec
a Geodesic DGGS: 

1. The base platonic solid.
2. The orientation of the base platonic solid relative to the

earth.
3. The hierarchical spatial partitioning method defined sym

metrically on a face (or set of faces) of the base platon
solid.

4. The transformation between each face and the corre-
sponding spherical surface.

We will now look at each of these design choices in turn, d
cussing the choices made in the development of a numbe
Geodesic DGGS’s.

Choice of Base Platonic Solid

The five platonic solids are shown in Figure 5. In gener
the greater the number of faces in the base platonic s
chosen, the less the distortion introduced when project
between a face of the polyhedron and the correspond
spherical surface. The icosahedron has the greatest num
of faces (20) and therefore projections defined on it tend
have relatively small distortion. Thus the icosahedron is t
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most common choice for base platonic solid. Geodesic
DGGS’s based on the icosahedron include those of William-
son (1968), Sadournay et al. (1968), Fekete and Treinish
(1990), Thuburn (1997), and (with a slight adjustment as dis-
cussed below) Heikes and Randall (1995a, 1995b).

Figure 5. The platonic solids: the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron.

The tetrahedron and cube have the smallest number of faces
(4 and 6 respectively) and are thus relatively poor base
approximations for the sphere.

The octahedron was chosen as the base platonic solid for
what is arguably the most currently well-developed Geode-
sic DGGS, the Quaternary Triangular Mesh (QTM) system
of Dutton (1988, 1996). The octahedron has the advantage
that it can be oriented with vertices at the north and south
poles, and at the intersection of the prime meridian and the
equator. In this orientation the faces of the octahedron align
with the spherical octants formed by the equator and the
prime meridian. Given a point in latitude/longitude coordi-
nates it is thus trivial to determine which octahedron face the
point lies on. As noted above, though, because it has fewer
faces than the icosahedron projections defined on the faces
of the octahedron tend to have higher distortion (White et al.,
in press).

Finally, Wickman et al. (1974) observe that if a point is
placed in the center of each of the faces of a dodecahedron
and then raised perpendicularly out to the surface of the
sphere (“stellated”), each of the 12 pentagonal faces
becomes 5 isosceles triangles. The stellated dodecahedron
thus has 60 triangular faces compared to the 20 faces of the
icosahedron, and thus a projection can be defined on the stel-
lated dodecahedron with lower distortion than on the icosa-
hedron (e.g., Snyder, 1992). However, there is a trade-off in
that the base triangles are no longer equilateral and the act of
stellation complicates the base polyhedral structure.

Choice of Polyhedron Orientation

Once a base platonic solid is chosen, an orientation relative
to the actual surface of the earth must be specified. One com-
pact way of specifying this is by giving the geodetic coordi-
nates of one of the polyhedron’s vertices and the azimuth
from that vertex to an adjacent vertex. For regular platonic

solids this information will completely specify the positio
of all the other vertices.

As mentioned above, Dutton (1988, 1996) orients the oc
hedron so that its faces align with the octants formed by 
equator and prime meridian.

Wickman et al. (1974) orient the dodecahedron by placin
the center of a face at the north pole and a vertex of that f
on the prime meridian, thus aligning with the prime meridia
an edge of one of the triangles created by stellating 
dodecahedron.

In the case of the icosahedron, the most common orienta
is to place a vertex at each of the poles and then align on
the edges emanating from the vertex at the north pole w
the prime meridian. This orientation is used in the systems
Williamson (1968), Sadournay et al. (1968), Fekete and
Treinish (1990), and Thuburn (1997). Figure 6a illustrat
this orientation.

Figure 6a. Spherical icosahedron orientation with vertice
at poles and edge aligned with prime meridian.

Fuller (1975) developed an icosahedron orientation for 
Dymaxion icosahedral map projection. He placed all 12 
the icosahedron vertices in the ocean so that the icosahe
could be unfolded onto the plane without breaks in any la
mass. This is the only known placement with this proper
Figure 6b shows Fuller’s orientation.

Figure 6b. Fuller’s spherical icosahedron orientation with
all vertices in oceans.

The icosahedron-based system of Heikes and Ran
(1995a, 1995b) was developed specifically for performi
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fluid flow simulations of global climate. They noted that in
the most common icosahedron placement (figure 6a) the
icosahedron is not symmetrical about the equator. When a
simulation on a DGGS with this orientation is initialized to a
state symmetrical about the equator, and then allowed to run,
it evolves into a state which is asymmetrical about the equa-
tor, presumably due to the asymmetry in the underlying
icosahedron orientation. To counter this they rotated the
southern hemisphere of the icosahedron 360, and the result-
ing “twisted icosahedron” is symmetrical about the equator.

We have noted that if the icosahedron is oriented so that the
north and south poles lie on the midpoints of edges rather
than at vertices then it is symmetrical about the equator with-
out further adjustment. Since under some subdivision
schemes there are special-case cells at the vertices (see
below), following Fuller’s lead we attempted to minimize
the number of vertices which fall on land, so that at least
land-based applications might be able to avoid the special
case handling of vertex cells. We discovered an orientation
which has only one vertex on land, in China’s Sichuan Prov-
ince. This orientation is shown in Figure 6c.

Figure 6c. Spherical icosahedron oriented for symmetry 
about equator by placing poles at edge midpoints.

Choice of Spatial Partitioning Method

Beginning with the chosen base platonic solid, we must now
choose a method of subdividing this polyhedron to create
finer resolution discrete grids. It is only necessary to define
the subdivision methodology on a single face of the polyhe-
dron, or some set of faces which constitute a unit which tiles
the polyhedron, provided that the subdivision is symmetrical
with respect to the face or tiling unit.

We have seen that the preferred choices of base platonic
solid are the icosahedron, the octahedron, and the stellated
dodecahedron, each of which has a triangular face. Begin-
ning with a triangle, the obvious choice for further subdivi-
sion is to divide the triangle into smaller triangles. Like the
square, an equilateral triangle can be divided into n2 smaller
equilateral triangles by breaking each edge into n pieces and
connecting the break points with lines parallel to the triangle

edges. In the literature of geodesic domes this is referred
as a Class I or alternate breakdown (Kenner, 1976). Recur
sively subdividing the triangles thus obtained in the sam
manner yields an aperture n2 discrete grid system. Small
apertures have the advantage of allowing more potential g
resolutions so that applications can choose a resolut
which best meets their needs. In the case of triangle subd
sion the smallest possible aperture is 4 (n = 2). This aper
is also convenient because it parallels the breakdown of 
square grid quadtree, and many of the algorithms develo
on the square grid quadtree are transferable to the trian
grid quadtree with only minor modifications (Fekete an
Treinish, 1990). Figure 7 shows this subdivision approa
which is used in the DGGS’s of Wickman et al. (1974), Dut-
ton (1988, 1996), and Fekete and Treinish (1990).

Figure 7. Three levels of a Class I/Alternate aperture 4
triangle subdivision.

It should be noted that another aperture 4 triangle subd
sion is possible. In this approach, referred to as the Class II
or triacon breakdown (Kenner, 1976), each triangle edge
broken into n = 2m pieces (where m is some positive integer
Lines are then drawn perpendicular to the triangle edges
form the new triangle grid. This breakdown is illustrated 
Figure 8. Note that while the Class I/alternate breakdown
congruent, the Class II/triacon breakdown is incongruent.

Figure 8. Three levels of a Class II/Triacon aperture 4
triangle subdivision.

Triangles have a number of disadvantages as the basis f
discrete grid system. First, they are not squares; they are 
a foreign alternative for many potential users, and they 
not display well on common output display devices that a
based on square lattices of pixels. Like square grids, they
not display uniform adjacency, each cell having three ed
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and nine vertex neighbors. Unlike squares, the cells of trian-
gle-based discrete grids do not have uniform orientation; as
can be seen in Figure 7, some triangles point up while others
point down. Many algorithms defined on triangle grids must
therefore keep track of triangle orientation.

The hexagon has received a great deal of recent interest as a
potential basis for discrete grid systems. Hexagons are the
most compact regular polygon which can tile the plane, and
hexagonal grids provide the greatest angular resolution when
compared to square and triangular grids (Golay, 1969).
Unlike square and triangle grids, hexagon grids do have uni-
form adjacency; each hexagon cell has six neighbors, all of
whose centers are exactly the same distance away from its
center. This fact alone has made them increasingly popular
as bases for discrete spatial simulations. The case for their
superiority for this purpose was greatly strengthened when
Frisch et al. (1986) discovered that a discrete hexagonal lat-
tice-gas model of incompressible hydrodynamics asymptoti-
cally goes over to the continuous two-dimensional Navier-
Stokes equations of incompressible hydrodynamics. This is a
surprising and not at all intuitive result; the six discrete
velocity vectors of the hexagonal lattice are necessary and
sufficient to simulate continuous, isotropic, fluid flow. A
recent textbook (Rothman and Zaleski, 1997) on fluid flow
cellular automata is based entirely on hexagonal meshes,
with discussions of square meshes included “only for peda-
gogical calculations.” Triangle grids, which are even more
insufficient for this purpose, are not mentioned.

While single resolution hexagon-based discrete grids are
becoming increasingly popular, the use of multi-resolution
hexagon-based discrete grid systems has been hampered by
the fact that congruent discrete grid systems cannot be built
using hexagons; it is impossible to exactly decompose a
hexagon into smaller hexagons (or, conversely, to aggregate
small hexagons to form a larger one). Hexagons can be
aggregated in groups of seven to form coarser resolution
objects which are almost hexagons, as illustrated in Figure 9,
and these can again be aggregated into pseudo-hexagons of
even coarser resolution, and so forth. This structure has a
very efficient tesseral arithmetic defined on it called general-
ized balanced ternary (Gibson and Lucas, 1982), and
because of this it has become the most widely used multi-
resolution hexagon-based grid system. However, it has sev-
eral problems as a general purpose basis for spatial data
structures. The first is that the cells are hexagons only at the
finest resolution. Secondly, the finest resolution grid must be
determined prior to creating the system, and once deter-
mined it is impossible to extend the system to finer resolu-
tion grids. Thirdly, the orientation of the tessellation rotates
by about 19 degrees at each level of resolution. Finally, it

does not appear to be possible to symmetrically tile a tri
gular face with such a hierarchy, which makes it unusable
a subdivision choice for a Geodesic DGGS.

Figure 9. Seven-fold hexagon aggregation into
coarser pseudo-hexagons.

There are however an infinite series of apertures that p
duce regular hierarchies of incongruent hexagon discr
grids. Figure 10 shows three levels of an aperture 3 hexa
subdivision, the smallest such subdivision possible.

Figure 10. Three levels of an aperture 3 hexagon subdiv
sion.

Aperture 4 hexagon subdivisions are also possible. Figu
11 and 12 illustrate aperture 4 hexagon subdivisions co
sponding to the Class I/alternate and Class II/triacon symm
try axes respectively. The DGGS’s of Heikes and Rand
(1995a) and Thuburn (1997) are aperture 4 Class I/altern
hexagon grids, while Williamson (1968) uses an aperture
Class II/triacon hexagon grid. Sadournay et al. (1968) use a 
Class I/alternate hexagon grid of arbitrary aperture.

It should be noted that it is impossible to completely tile
sphere with hexagons. When a base polyhedron is tiled w
hexagon-subdivided triangle faces a non-hexagon polyg
will be formed at each of the polyhedron’s vertices. Th
number of such polygons, corresponding to the number
polyhedron vertices, will remain constant regardless of g
resolution. In the case of an octahedron these polygons 



be 8 squares, in the case of the icosahedron they will be 12
pentagons.

Figure 11. Three levels of an aperture 4 Class I/Alternate
hexagon subdivision.

Figure 12. Three levels of an aperture 4 Class II/Triacon
hexagon subdivision.

Choice of Transformation

Once a method has been chosen for subdividing the planar
face of the polyhedron some transformation must be chosen
for creating a similar topology on the corresponding spheri-
cal surface. Perhaps the simplest approach is to perform the
subdivision directly on the spherical surface, using great cir-
cle arcs corresponding to the lines in the plane. The aperture
4 Class I/alternate triangle subdivision can be performed on
the sphere by connecting the midpoints of the edges of the
base spherical triangle, and then recursively performing the
same operation on each of the resulting triangles. This tech-
nique is used by Fekete and Treinish (1990).

It is important to note, however, that the three sets of great
circle arcs corresponding to the grid lines of the planar trian-
gle subdivision methods shown above do not in general
intersect in  points on the surface of the sphere as they do on
the plane. Numerous methods for constructing triangle sub-
divisions on the sphere analogous to the Class I and Class II
plane subdivisions are given in Clinton (1971) and Kenner
(1976).

Williamson (1968) uses great circle arcs corresponding to
two of the three sets of Class II/triacon triangle subdivision
grid lines to determine a set of triangle vertices, and then
forms the last set of grid lines by connecting the existing ver-

tices with great circle arcs. These triangle vertices form a
dual aperture 4 Class II/triacon hexagon grid.

Sadournay et al. (1968) first create an aperture n (where n =
m2 for some integer m) Class I/alternate triangle subdivision.
This is constructed on the sphere by breaking each edge of
the base spherical triangle into m segments, and connecting
the breakpoints of two of the edges with great circle arcs.
These arcs are then subdivided evenly into segments corre-
sponding to the planar subdivision. The resulting break-
points form the centers of a Class I/alternate hexagon grid.

Thuburn (1997) performs an aperture 4 Class I/alternate tri-
angle subdivision and then calculates the spherical voronoi
cells of the triangle vertices to form an aperture 4 Class I/
alternate hexagon grid.

A number of researchers have attempted to adjust the grids
created using great circle arcs to meet some application-spe-
cific criteria. For instance, for many applications it would be
desirable for the areal cells of each discrete grid resolution to
be equal in area; the grids discussed above do not have this
property. Wickman et al. (1974) begin by connecting the
midpoints of the base spherical triangle to form the first reso-
lution of an aperture 4 Class I/alternate grid. They then break
each of the new edges at the midpoint into two great circle
arcs, and adjust the position of the breakpoint to achieve
equal area quasi-triangles. This procedure is then applied
recursively to yield an equal-area DGGS. Rather than using
great circle arcs for triangle subdivision, Song (1997) pro-
poses using small circle arcs chosen to achieve equal cell
areas.

The QTM DGGS (Dutton, 1988, 1996) creates an aperture 4
Class I/alternate triangle subdivision by using small circles
corresponding to parallels of latitude relative to the octahe-
dron vertices.

Heikes and Randall (1995a) begin by constructing an aper-
ture 4 Class I/alternate hexagon grid by taking the spherical
voronoi of the vertices of an aperture 4 Class I/alternate tri-
angle subdivision on their twisted icosahedron. They then
adjust the grid using an optimization scheme to improve its
finite difference properties (Heikes and Randall, 1995b) for
use in global climate modeling.

White et al. (in press) evaluate a number of methods for con-
structing triangle subdivisions on spherical triangles and
observe that using appropriate inverse map projections to
transform a subdivided planar triangle into a spherical trian-
gle may be more efficient than using recursively-defined
procedures. Projections may be used provided that they map
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the straight-line triangle edges on the plane to the great-cir-
cle arc edges of the corresponding spherical triangle. There
are at least three projections with this property. The common
gnomonic projection has this property for all polyhedra but
exhibits relatively large area and shape distortion. The
implementation of Fuller’s Dymaxion map projection
(Fuller, 1975) given in Gray (1995) also has the required
property on the icosahedron but with less area and shape dis-
tortion than the gnomonic. Finally, Snyder (1992) gives
equal area projections defined on all of the platonic solids,
though with greater shape distortion than the Fuller/Gray
projection.

An Example: Constructing the ISEA Grid

Now as an example let us take each of the design decisions
in turn and attempt to construct a good all-purpose DGGS.
First, due to its lower distortion characteristics we choose the
icosahedron for our base platonic solid. We orient it with the
north and south poles lying on edge midpoints so that the
resulting DGGS will be symmetrical about the equator. Next,
we note the numerous advantages of hexagon grids dis-
cussed above, especially for spatially discrete simulations.
While their incongruence may be a disadvantage for storing
fields, it is a common feature of multi-resolution location
DGGS’s such as those induced by the latitude/longitude grat-
icule. We choose the smallest possible hexagon aperture of
three. Finally, because equal-area cells are advantageous for
many applications, we choose the inverse Snyder equal area
projection on the icosahedron to transform the hexagon grid
to the sphere. We call the resulting grid the Icosahedral Sny-
der Equal Area aperture 3 Hexagonal grid (ISEA3H).

Figure 13 shows ETOPO5 5’ elevation data binned into four
resolutions of the ISEA3H grid by assigning to each cell an
elevation value calculated by taking the arithmetic mean of
all ETOPO5 data points which fall into that cell.

Figure 13. ETOPO5 5’ elevation data binned into four res
lutions of the ISEA3H DGGS: (a) 210,000 km2 hexagons, 

(b) 70,000 km2 hexagons, (c) 23,000 km2 hexagons, and (d) 
7,800 km2 hexagons.
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